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We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-
diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the intro-
duction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns
of hexagons, stripes, and labyrinths which oscillate at half of the forcing frequency. Both the noise strength and
the correlation time control the pattern formation. The system transits from homogeneous to hexagons, stripes,
and to labyrinths successively as the noise strength is adjusted. Good frequency-locked patterns are only
sustained by the colored noise and a finite time correlation is necessary. At the limit of white noise with zero
temporal correlation, irregular patterns which are only nearly resonant come out as the noise strength is
adjusted. The phenomenon induced by colored noise in the forced reaction-diffusion system is demonstrated to
correspond to noise-induced Turing instability in the corresponding forced complex Ginzburg-Landau
equation.
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I. INTRODUCTION

It is widely accepted nowadays that noise can play con-
structive roles and leads to a rich variety of dynamical ef-
fects. Far from being a nuisance to be avoided, noise can
induce organized and counterintuitive dynamical behavior.
Well-known examples in zero-dimensional systems are
noise-induced transitions �1� and stochastic resonance �2�.
More recently, effects of noise in spatially distributed sys-
tems �3� include noise-induced phase transitions �4�, noise-
induced pattern formation �5�, noise-induced fronts �6�, and
wave nucleation �7�, to name only a few. In these and other
noise-related phenomena, multiplicative noise, which is
coupled to the system state, plays a very special role. How-
ever, prominent effect has been also found for additive noise.
Such influence has been observed in noise-induced phase
transition �8� and pattern formation �9,10�, in self-replicating
patterns controlled by additive noise �11�, and noise-induced
front propagation �12�. A recent report �13� demonstrated
that additive noise which globally alternates two different
monostable excitable dynamics yields pattern formation. In
this paper, we report resonant patterns induced by additive
noise in oscillatory reaction-diffusion systems subject to pe-
riodic forcing.

Oscillatory spatial patterns can conventionally be gener-
ated by forcing a spatially extended system. They can be
obtained by forcing periodically a system which is autono-
mously oscillatory �14–23�. This has been studied exten-
sively in both theory and experiment. Similar to that in a
single forced nonlinear oscillator, frequency locking occurs
in resonantly forced oscillatory reaction-diffusion systems.
The entrained system has n-phase patterns with phases sepa-
rated by multiples of 2� /n, and thus traveling waves are
stabilized to standing wave patterns. Resonant patterns such
as entrained multiphase oscillating clusters and labyrinthine

standing-wave patterns have been observed in the forced
photosensitive Belousov-Zhabotinsky reaction �20–22�.
While previous works have studied resonant pattern forma-
tion in this type of media, we here focus on the effect of
noise and report the phenomenon of noise-induced resonant
patterns. It has been recently reported that resonant patterns
can also be induced by global periodic switching between
two dynamics which are both spatially homogeneous �24�.
Our finding lies in that the resonant patterns are generated in
the forced oscillatory media and particularly are induced by
additive noise which is colored.

The effect of noise on resonant pattern formation in
forced oscillatory systems has not been studied until recently
�25�. Zhou et al. demonstrated with the FitzHugh-Nagumo
model that additive noise can affect the frequency of en-
trained oscillating clusters. We here study the effect of noise
on resonant pattern formation in the reaction-diffusion Brus-
selator which is driven globally by a periodic force. We re-
port that frequency-locked resonant patterns of hexagons,
stripes, labyrinths can be induced by additive noise which is
temporally colored and spatially white. Furthermore, the
noise intensity, the correlation time of the noise control the
formation and transition of the resonant patterns. The or-
dered patterns which oscillate at one-half of the forcing fre-
quency, are noise sustained. They disappear and recede to the
2:1 locked homogeneous oscillations when the noise is
moved away. The colored noise is necessary in order to gen-
erate the resonant patterns that are exactly frequency locked.
At the white noise limit of the colored noise, only irregular
patterns which are nearly resonant are produced when the
noise strength is adjusted.

In the following, we first give the model and method we
used, and give a description of the phenomenon. The result is
discussed in the formulation of amplitude equation. We dem-
onstrate that the phenomenon induced by noise in the forced
reaction-diffusion system corresponds to noise-induced Tur-
ing instability in the corresponding forced complex
Ginzburg-Landau equation.*Electronic address: qi@pku.edu.cn
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II. MODEL AND METHODOLOGY

The model we employ is the reaction-diffusion Brussela-
tor which is driven homogeneously by periodic forces on
both variables of the activator and the inhibitor,

�u

�t
= a − �1 + b�u + �u2v + � cos�wt�� + ��r,t� + Du�

2u ,

�1�

�v
�t

= bu − �u2v + � cos�wt�� + Dv�
2v . �2�

The forcing enters into the system by modulating periodi-
cally the cubic reaction rate. ��r , t� is the noise introduced
additively into the system, which is the Ornstein-Uhlenbeck
process that obeys the following stochastic partial differen-
tial equation:

���r,t�
�t

= −
1

�
��r,t� +

1

�
��r,t� , �3�

where ��r , t� is a Gaussian white noise with zero mean and
correlation,

���r,t���r�,t��� = 2���r − r����t − t�� . �4�

The colored noise ��r , t�, which is temporally correlated and
white in space, satisfies

���r,t���r�,t��� =
�

�
exp�−

�t − t��
�

	��r − r�� , �5�

where � controls the temporal correlation, and � measures
the noise intensity.

For the unforced Brusselator, Hopf instability occurs at
bc

H=1+a2. Homogeneous oscillation comes up when b	bc
H.

Turing patterns appear when b	bc
T �bc

T= �1+a
Du /Dv�2�
and Dv	

Dua2

�
1+a2−1�2 are both satisfied. The periodically driven

Brusselator with spatial diffusion was investigated recently
by forcing only the u variable �26�. When the system lies in
the vicinity of both Hopf and Turing instability, rich oscillat-
ing patterns were observed. These patterns result from the
interaction of Hopf and Turing instability. As in Ref. �27�, we
here consider the situation when the unforced system lies far
away from the Turing instability �we set always Du
Dv�,
and the system is in the regime of self-sustained Hopf oscil-
lation. On a discrete square lattice, the stochastic partial dif-
ferential equations �1� and �2� are integrated numerically
with periodic boundary conditions by applying the finite dif-
ference approach of the Heun algorithm �3�. Except when it
is explicitly pointed out, we take parameters a=2, b=5.3,
�=1.2, �=4.18, Du=0.2, Dv=0.02 throughout this paper.
The noise intensity � and correlation time � are adjusted as
control parameters.

III. RESULTS

When the system is noise free and with the parameter
values we take, the forced oscillatory media lies in the re-

gime of 2:1 frequency locking. The system oscillates at one-
half of the forcing frequency. Dependent on the initial con-
ditions, two-phase patterns, with a phase shift of � and
separated by a stationary Ising front, appear �Fig. 1�a��, or
alternatively homogeneous oscillations come out. From the
random initial condition prepared by randomly perturbing
the homogeneous steady state u=a, v=b /a, we obtain 2:1
resonant homogeneous oscillations.

We turn on the additive noise and adjust the noise strength
and correlation length to check their effects on the homoge-
neous oscillation. At a first series of simulations, we adopt
�=0.8, and adjust the noise intensity �. When � is small, the
homogeneous oscillation is only slightly perturbed by the
noise as depicted in Fig. 1�b�. As � is increased, the homo-
geneous oscillating pattern loses its stability. Figure 1�c�
shows that oscillating two-phase pattern with bubbles appear
at �=0.1. When the noise strength is increased, the bubbled
pattern becomes more and more regular. At �=0.16, clear
oscillating hexagonal pattern is generated �Fig. 1�d��. As the
noise strength grows to even larger values, the hexagonal
pattern loses its stability again. Figure 1�e� demonstrates that
the hexagons merge and form a mixed pattern of hexagons
and stripes. The hexagons transit to stripes at �=0.258 �Fig.
1�f��. At �=0.3, the stripes are unstable, and labyrinths domi-
nate as seen in Fig. 1�g�. At sufficiently large �, the pattern
becomes irregular �Fig. 1�h��. The ordered pattern is finally
destroyed by the noise. All these patterns are noise sustained.
They disappear and resort to the original homogeneous os-
cillations after the noise is turned off. The patterns �Figs.
1�c�–1�g�� induced by the noise are resonantly locked. They
are standing waves that oscillate at half of the driving fre-
quency. As an example shown in Fig. 2, the space-time plot
for the hexagonal pattern of Fig. 1�d� in comparison with the
external forcing amplitude illustrates that the patterns are
well 2:1 frequency locked.

Spatial Fourier transformation of the hexagonal pattern in
Fig. 1�d� reveals that the pattern which is temporally reso-
nant is also in spatial resonance. Figure 3�a� depicts that the
wave vectors of spatial Fourier transformation form a hexa-
gon which is typical for hexagonal Truing patterns.

FIG. 1. Frequency-locked patterns including hexagons, stripes,
and labyrinths that are induced by colored noises of different
strength. The images are grey-scaled snapshots of u field at an
instant t �bottom�, and at one-half oscillation period T /2 �top� later.
Noise strength � is increased from 0.03 to 0.1, 0.16, 0.2, 0.258, 0.3,
and 1.2 for columns �b�, �c�, �d�, �e�, �f�, �g�, and �h�, respectively.
Other parameters, a=2, b=5.3, Du=0.2, Dv=0.02, w=4.18, �
=1.2. Noise correlation time �=0.8. The lattice size is 128�128
with spacing 0.25. The initial condition for the noise-induced pat-
terns is the randomly perturbed homogeneous equilibrium �u=a ,v
=b /a�.
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In previous experiments or simulations, the labyrinthine
patterns have been found to be ample and easily observed in
periodically forced self-sustained oscillating media. The
resonant hexagonal pattern was predicted in this type of me-
dia by the forced amplitude equation �15�, but has rarely
been found in experiments or simulations. Hexagonal pat-
terns appear most frequently in systems undergoing a Turing
instability. It was reported that hexagonal patterns that oscil-
late can be generated from the interaction between a Turing
mode and Hopf oscillation in either periodically forced �26�
or unforced �28,29� reaction-diffusion systems. The patterns
thus produced are termed as oscillating Turing patterns
which are phenomenologically very similar to those we find
here. The resonant hexagons in Fig. 1�d� were however gen-
erated with parameters far away from the regime of Turing
bifurcation �we set Du
Dv�. Furthermore, the patterns we
obtain are strictly standing waves which are stable in space,

while the oscillating Turing patterns drifted slightly in space
as reported in Ref. �26�. The oscillatory spatial patterns re-
ported here are similar to those found in Ref. �24�, where
resonant hexagonal patterns were generated by switching pe-
riodically between two spatially homogeneous stable states.
The difference of our results lies in that the resonant patterns
are generated in the forced oscillatory media which are in-
duced by additive colored noise.

The role of temporal correlation � of the noise is signifi-
cant in inducing and controlling the formation and transition
of the resonant patterns. As � is increased, a larger value of
noise strength � is required in order to generate the patterns
than otherwise with a smaller �. We scanned the correlation
time and noise strength, and generated �-� phase diagram.
Figure 4 depicts that the transition point is shifted toward
higher values of the noise intensity as the correlation time is
increased, that is, � softens the effect of the noise. The soft-
ening effect �30� of the correlation time is obvious from the
definition of noise �. In Eqs. �3� and �5�, an increase in �
tends to weaken the effective noise intensity, and a pattern
obtained with a relatively smaller � therefore needs a larger
value of � when � is increased. As � goes to infinity, the
Ornstein-Uhlenbeck process goes to a no-noise limit. In this
case, noise-free behavior, that is homogeneous oscillations in
this context, should be recovered. Figure 5 demonstrates the
effect of growth in � on the hexagonal pattern shown in Fig.
1�d�. As � increases to 1.4 and 2.0, the system recedes to
bubbled patterns as that shown in Fig. 1�c�. At �=10.0 �Fig.
5�d��, the patterns are approximately homogeneous as in Fig.
1�b�.

At the other limit of the colored noise, � goes to zero and
white noise is obtained. In this limit, the forced system is no

FIG. 2. Space-time diagram �top panel, with vertical space and
horizontal time� displaying the time evolution of the pattern along
the cross section marked in the two-dimensional image of Fig. 1�d�.
For comparison, the curve at the bottom shows the periodic external
forcing. The pattern oscillates at one-half of the external forcing
frequency demonstrating a 2:1 frequency locking.

FIG. 3. Patterns �left-hand column� and their spatial Fourier
transformation �right-hand column�. The resonant hexagonal pattern
of �a� is computed with parameters as in Fig. 1�d�; the pattern of �b�
is obtained under the influence of white noise with intensity �
=0.12. 256�256 lattice is used for generating the patterns.

FIG. 4. Phase diagram in �-� parameter space.

FIG. 5. Effect of correlation time � of noise �: �=1.4 for �a�, 2
for �b�, 5 for �c�, and 10 for �d�. Other parameters are as Fig. 1�d�.
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longer completely frequency locked as the noise strength is
scanned. The noise sustains only irregular patterns that are
only approximately resonant. This is true in the whole pa-
rameter ranges that we have checked. Figure 6 depicts the
patterns and their time evolutions when � grows from 0.05 to
0.12, 0.2, and 0.4. Irregular spotted patterns �Fig. 6�b�� and
labyrinths �Fig. 6�c�� are generated. The space-time diagrams
depict that the patterns do not repeat themselves exactly after
a time period of T. This is in contrast with the case shown in
Fig. 2 where the resonant pattern is sustained by colored
noise. Figure 6�b� are apparently similar to hexagons shown
in Fig. 1�d�. But as compared in Fig. 3, the pattern sustained
by white noise �Fig. 3�b�� do not have as good space period-
icity as the pattern sustained by colored noise �Fig. 3�a��.
Our numerical simulations indicate that the colored noise is
the source of good resonance, and nonzero � is necessary in
order to maintain good frequency-locked patterns such as
hexagons, stripes, and labyrinths.

We adopt a simple intensive order parameter to character-
ize transitions between resonant patterns which are con-
trolled by � and �. It is defined as

m =

i,jui,j

N2 , �6�

where N is the lattice size, ui,j is the concentration of u
variable at a discrete site �i , j�. Due to that the patterns are
time dependent, the sum is calculated at the instant when
cos�wt /2�=−1, and m is obtained as the mean of many times
of calculations. Figure 7 displays the dependence of the or-
der parameter m on the noise intensity �. The curves are

calculated by increasing � continuously, and at each value of
� the order parameter m is calculated after sufficient long
time of evolution. As shown in Fig. 7, m grows in a step-up
manner. The stages of planar growth correspond to homoge-
neous oscillations �I�, resonant hexagonal patterns �II�, and
stripes or labyrinthine patterns �III�, respectively. At the tran-
sition stages, the resonant patterns change drastically and m
grows rapidly as � increases. The softening effect of the
noise correlation time is also manifested in Fig. 7. The tran-
sition points are shifted toward higher values of noise inten-
sity.

IV. DISCUSSIONS

To explore the effect of noise, the linear analysis of sta-
bility with the help of Novikov’s theorem �31� which is ap-
plicable for multiplicative noise is not directly usable for the
additive noise. One must resort to the approach of structure
functions within linear approximation and the mean field ap-
proach �3�, or adopt the recent moment-based analysis �10�.
As the system we consider here is subject to periodic forcing
and involves resonant patterns, the conventional approaches
are not directly applicable. In the following, we consider the
amplitude equation for resonantly forced oscillatory systems,
and show that the noise-induced resonant patterns in the
forced reaction-diffusion Brusselator correspond to the
noise-induced Turing instabilities in the forced complex
Ginzburg-Landau equation �CGLE�.

As has been demonstrated in previous experiments and
simulations, the above resonant patterns induced by noise
appear conventionally in forced oscillatory media that are
not influenced by noise, and are analyzed in the formulation
of the forced CGLE �15�. It has the following form:

�A

�t
= �� + i��A − ��r + i�i��A�2A + ��r + i�i��2A + �̃Ān−1,

�7�

The parameters in the equation are related to those in the

Brusselator model: �=
b−bc

H

2 , �=w0−w /2; �r=1/a2+1/2, �i

FIG. 6. Effect of white noise with different intensities. The top
two rows are snapshots taken at time t and t+T /2, respectively. The
bottom panels are space-time diagrams displaying the time evolu-
tions of the nearly resonant patterns, which are generated as that in
Fig. 2. Parameters: �=0.05 for column �a�, 0.12 for column �b�, 0.2
for column �c�, and 0.4 for column �d�. Other parameters are the
same as Fig. 1.

FIG. 7. Order parameter m vs � with correlation time �=0.8
�squares�, and �=1.4 �circles�. The arrow-marked points correspond
to frequency-locked patterns in Figs. 1�b�–1�g�, respectively. I, II,
and III denote the locked patterns of homogeneity, hexagon, and
stripes or labyrinth, respectively.
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= 2
3a3 − 7

6a + 2a
3 ; �r= �Du+Dv� /2, �i=a�Dv−Du� /2; �̃

= �
4a4−11a2+4
6a2 . Variable A is the complex amplitude of the

resulting nonlinear oscillations with period T=2�n /w. Equa-
tion �7� describes a spatially extended oscillatory system
subject to resonant periodic forcing at frequency w�nw0,
where w0 is the natural frequency of the unforced spatially
homogeneous oscillations. A theoretical study �15� of the
above equation showed that resonant forcing can exhibit rich
patterns as the external frequency is varied. We consider 2:1
resonance by taking n=2 in accordance with our simulations,
and concentrate on the effect of noise in the forced CGLE.

By introducing additively the noise ��r , t� of Eq. �3� into
Eq. �7�, we generate spatially stationary patterns similar to
the noise-induced Faraday-type patterns in Fig. 1. In Eq. �7�,
there are two symmetrical homogeneous steady states �HSS�
A0, and −A0, together with the equilibrium �0, 0� which is
unstable. In the original forced reaction-diffusion equations,
the bistable HSS states A0 and −A0 correspond to the en-
trained oscillations of opposite phases. As the noise � is
added to Eq. �7�, we find that Turing bifurcations can be
induced and occur on both branches of the symmetrical HSS
states. When � and � are adjusted, we observe similar sce-
nario of phase transitions to that shown in Fig. 1. Figure 8
demonstrates that the homogeneous steady states become un-
stable as the noise intensity is increased, and patters of hexa-
gons �Fig. 8�b�� and labyrinths �Fig. 8�d�� are successively
induced. In Fig. 8, top and bottom panels are patterns evolv-
ing from the instabilities of A0 and −A0, respectively. This
indicates that the Turing patterns in Figs. 8�b�–8�d� induced
by noise in the forced CGLE correspond to the resonant 2:1
patterns generated in Eqs. �1� and �2�.

The Turing patterns in Fig. 8 are induced when the noise
is weak. As the noise intensity is increased, Turing patterns
bifurcated from A0 and −A0 will be ruined. The labyrinthine
patterns are not spatially stationary with �=0.15 �Fig. 8�e��.
The patterns are destroyed completely when the noise
strength is sufficiently large with �=0.5 �Fig. 8�f��.

It has been reported that additive noise can significantly
shift the boundaries of phase transitions in nonlinear chains

induced by multiplicative noise �32�, or in the conserved
Ginzburg-Landau model �30�. The phenomenon of additive-
noise-induced resonant patterns we demonstrated here pre-
sents another example of significant effects of additive noise.
Numerical exploration of Eqs. �1� and �2� that are not influ-
enced by the noise ��r , t� showed that resonant patterns in-
duced by the colored noises can be generated by adjusting
the forcing amplitude and frequency. The parameters under
which the resonant patterns are generated from Eqs. �1� and
�2� turn out to lie in the vicinity of the transition boundaries.
The effect of the noise on the forced Brusselator or on the
forced CGLE lies in that it shifted the transition boundaries
and advanced the appearance of phase transitions.
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